If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2+22u-121=0
a = 1; b = 22; c = -121;
Δ = b2-4ac
Δ = 222-4·1·(-121)
Δ = 968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{968}=\sqrt{484*2}=\sqrt{484}*\sqrt{2}=22\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-22\sqrt{2}}{2*1}=\frac{-22-22\sqrt{2}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+22\sqrt{2}}{2*1}=\frac{-22+22\sqrt{2}}{2} $
| -42v+54=-28-8v | | 7x+10=1/3(12x−3)+14x | | 30+2k+5=100 | | 2-6p=-7p | | 8=k-7 | | -5x+3+6x=25 | | 2x•(x+8)+x=180 | | 2x-2=4x/6 | | 7x-1+3x=-1 | | 3(x-2)=5x+8=12 | | 2(6a+3)=66 | | 7-3(5-u)=5(u-4) | | 1/5-3/2=z/10 | | 2^9x+2=16^5x-2 | | 9x=9(x-1) | | -71=-6(4b-4)+5b | | 5/4y-1/3=1/2(3y-1) | | n=1.4-(-6.3) | | 9-3g=14 | | 7y-7/4=-2/3y-4/3 | | 18-2x-14=8x-20/2-2 | | 6+6(3m-6=-138 | | -4(4b+3)=68 | | 4x3x+11=60 | | 11.6+4.1t=6+3.2(t-4) | | .75t+1/8=3/4(t+8) | | b-4÷6=6÷2 | | 4(x-5)+2=4x−18 | | 10+35=-5(8x-9) | | 2(3m+2)=-8 | | 4*(x−5)+2=4x−18 | | x-(4-x)=8 |